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Model

Experiment

Conclusion

Time series prediction plays a key role in wide applications and has been investigated for a couple of
decades. Nevertheless, most of the prior works fail to identify the most effective frequency
components of time series before passing through the prediction, which induces the drop of the
performance.

We consider that the input data contains valuable and structural pattern as well as irrelevant
information. This irrelevant information will lower the performance of the model, so we need to
extract the patterns which is task relevant without any prior.

• To the best of our knowledge, this is the first
work to learn the effective component in
time series forecasting instead of artificially
designing a filter via signal processing.

• Experiments results demonstrate the
effectiveness in comparison to state-of-the-
art baselines.

We have presented an interpretable data reconstructor for time series prediction in
this paper. By integrating the data reconstructor and Seq2Seq model, the novel
predictor is able to extract the most effective components of time series and thus
exhibits an impressive performance in prediction compared to baselines.

First Stage: Initial training of the basic predictor. The encoder takes each 𝑥𝑡 as input
and updates the hidden state and cell state at each time stamp. The decoder aims to
generate the basic prediction based on the attention mechanism.

Data flow: x → x1 → hT → ොy1 ↦ L1

Loss function: L1 = L 𝑦, ො𝑦1

Second Stage: The original input data x1 is reconstructed to x2, and then x2 is put
into the basic predictor again and get the final prediction ොy2.

Data flow: x → x1 → hT → x2 → hT → ොy2 ↦ L2

Loss function: L2 = γ ⋅ L x2, x1 + 1 − γ ⋅ L 𝑦2, ො𝑦2

Main Results

We choose two public datasets for experiments, ENSO (Nino Phenomenon) and EP
(Electricity Price). The following table summarizes the evaluation results of various
methods on all test data in terms of mean squared error (MSE) and Th   ’ U-
statistics (U). As is shown in the below table, our method achieves the best
performance compared to other 5 model in the majority experiments.

Ablation Study

The core of our proposed IPR is the data reconstructor. After we remove the
reconstructor, IPR degenerates back to BPSM. Obviously, BPSM is identical to
Seq2Seq whose performance is illustrated in the upper table.

Introduction Background & Motivation Contributions

Interpretation

As illustrated in the below figures, it is observed that the effective
frequency component can be extracted by our proposed
reconstructor, where lots of the high frequency noise has been
filtered out. In further, we can observe this change more clearly
from the time-domain diagram where the reconstructed data is
more smoother than the raw data.

x1 hT

Θ

x2

hT ↦ Θ (FN)

x1 = DFT x1

x2 = Θ ⋅ x1

x2 = IDFT x2

Steps: We firstly feed the hidden state in the last time stamp in
the encoder into the forward network (balancer). So we get the
coefficient factor Θ. And we get the frequency spectrum of the
input data x1 by DFT. And multiply the coefficient factor Θ. So we
get the reconstructed data x2 by IDFT.

Data flow:     x1 ൜
x1→hT→Θ

x1→x1
≻∗ → x2 → x2

Datasets H
AR Ridge TCN Wavelet-T

Seq2Seq

(BPSM)

IPR 

(Our method)

MSE U MSE U MSE U MSE U MSE U MSE U

NINO 1-2

2 1.3667 0.0021 0.2782 0.0010 0.6004 0.0014 1.1718 0.0020 0.5800 0.0014 0.8918 0.0017 

4 3.4313 0.0034 0.4691 0.0012 0.6814 0.0015 0.9009 0.0017 1.1994 0.0020 0.4477 0.0012 

8 10.6932 0.0062 0.8739 0.0017 0.7875 0.0016 1.3262 0.0021 1.6922 0.0024 0.5136 0.0013 

NINO 3

2 0.4010 0.0009 0.1776 0.0006 0.5530 0.0011 0.5341 0.0011 0.3218 0.0008 0.2082 0.0007 

4 1.8407 0.0020 0.3845 0.0009 0.3166 0.0008 0.6066 0.0011 0.7815 0.0013 0.2862 0.0008 

8 3.7377 0.0029 0.6229 0.0012 0.5916 0.0011 0.8459 0.0013 1.3398 0.0017 0.1739 0.0006 

NINO 3-4

2 0.1394 0.0005 0.1247 0.0005 0.3578 0.0008 0.4345 0.0009 0.2429 0.0007 0.1152 0.0005 

4 0.6217 0.0011 0.2551 0.0007 0.2638 0.0007 0.5700 0.0010 0.3634 0.0008 0.1526 0.0005 

8 1.6354 0.0017 0.4561 0.0009 0.5871 0.0010 0.8947 0.0013 1.0797 0.0014 0.0906 0.0004 

NINO 4

2 0.0483 0.0003 0.0567 0.0003 0.4068 0.0008 0.3309 0.0007 0.1151 0.0004 0.0739 0.0003 

4 0.1625 0.0005 0.1512 0.0005 0.1351 0.0004 0.3141 0.0007 0.2030 0.0006 0.0633 0.0003 

8 0.4922 0.0009 0.4209 0.0008 0.4999 0.0009 0.6071 0.0010 0.4306 0.0008 0.0693 0.0003 

EP

2 19.5279 0.0029 4.3653 0.0014 4.1183 0.0013 5.2937 0.0015 6.6679 0.0017 6.0680 0.0016 

4 34.3566 0.0038 6.9597 0.0017 6.9498 0.0017 6.9967 0.0017 6.7628 0.0017 6.6738 0.0017 

8 70.5371 0.0060 7.7967 0.0019 7.2836 0.0017 8.9940 0.0020 15.0008 0.0026 6.0237 0.0016 

The reconstructor is composed of a balancer for coefficient
calculation and a regulator for frequency adjustment.

Please note that other learning algorithms or architectures are
orthogonal to our framework and could be used to improve
performance. Anybody could design new basic predictor or
reconsturctor, such as auto-encoder.
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