

DARA: Roward Augmentat

Dynamics-Aware Reward Augmentation in Offline Reinforcement Learning

Presenter: Jinxin Liu (liujinxin@westlake.edu.cn)

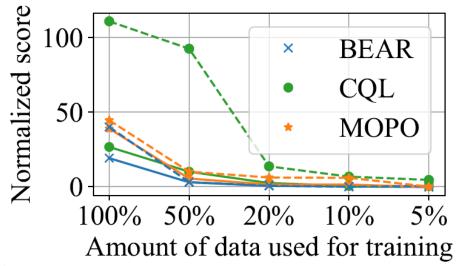
Co-Authors: Hongyin Zhang, Donglin Wang

Offline Reinforcement Learning (RL)

Offline reinforcement learning: learning from the previously collected dataset.

Offline-data-hungry!

Collecting a large offline dataset for one specific task over one specific environment is costly and laborious.



Offline Domain (Dynamics) Adaptation

• Source → Target

Offline Domain (Dynamics) Adaptation

Limited target offline data: \mathcal{D}

$$\{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim d_{\mathcal{D}}(\mathbf{s}) \pi_b(\mathbf{a}|\mathbf{s}) r(\mathbf{s}, \mathbf{a}) T(\mathbf{s}'|\mathbf{s}, \mathbf{a})\}$$

Source offline data: \mathcal{D}'

$$\{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim d_{\mathcal{D}'}(\mathbf{s}) \pi_{b'}(\mathbf{a}|\mathbf{s}) r(\mathbf{s}, \mathbf{a}) T'(\mathbf{s}'|\mathbf{s}, \mathbf{a})\}$$

Assumption:

- Same state space
- Same action space
- Same reward function
- Different transition dynamics
- Deterministic transition dynamics

Definition 2 (Dynamics shift) Let $\hat{M} := (\mathcal{S}, \mathcal{A}, r, \hat{T}, \rho_0, \gamma)$ be the empirical MDP estimated from \mathcal{D} . To evaluate a policy π for $M := (\mathcal{S}, \mathcal{A}, r, T, \rho_0, \gamma)$ with offline dataset \mathcal{D} , we say that the dynamics shift (between \mathcal{D} and M) in offline RL happens if there exists at least one transition pair $(\mathbf{s}, \mathbf{a}, \mathbf{s}') \in \{(\mathbf{s}, \mathbf{a}, \mathbf{s}') : d^{\pi}_{\hat{M}}(\mathbf{s})\pi(\mathbf{a}|\mathbf{s})\hat{T}(\mathbf{s}'|\mathbf{s}, \mathbf{a}) > 0\}$ such that $\hat{T}(\mathbf{s}'|\mathbf{s}, \mathbf{a}) \neq T(\mathbf{s}'|\mathbf{s}, \mathbf{a})$.

Lemma 2 Dynamics shift produces that $\mathcal{B}^{\pi}_{\mathcal{D}'}Q(\mathbf{s}, \mathbf{a}) \neq \mathcal{B}^{\pi}_{M}Q(\mathbf{s}, \mathbf{a})$ for some (\mathbf{s}, \mathbf{a}) in S'_{π} .

Dynamics-Aware Reward Augmentation

Lemma 2 Dynamics shift produces that $\mathcal{B}^{\pi}_{\mathcal{D}'}Q(\mathbf{s}, \mathbf{a}) \neq \mathcal{B}^{\pi}_{M}Q(\mathbf{s}, \mathbf{a})$ for some (\mathbf{s}, \mathbf{a}) in S'_{π} .

Resort an additional compensation $\Delta_{\hat{T}',T}$ such that

$$\mathcal{B}_{\mathcal{D}'}^{\pi}Q(\mathbf{s},\mathbf{a}) + \Delta_{\hat{T}',T}(\mathbf{s},\mathbf{a}) = \mathcal{B}_{M}^{\pi}Q(\mathbf{s},\mathbf{a})$$

Algorithm 1 Framework for Dynamics-Aware Reward Augmentation (DARA)

Require: Target offline data \mathcal{D} (reduced) and source offline data \mathcal{D}'

- 1: Learn classifiers $(q_{sas} \text{ and } q_{sa})$ that distinguish source data \mathcal{D}' from target data \mathcal{D} . (See Appendix A.1.3)
- 2: Set dynamics-aware $\Delta r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) = \log \frac{q_{\text{sas}}(\text{source}|\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})}{q_{\text{sas}}(\text{target}|\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})} \log \frac{q_{\text{sa}}(\text{source}|\mathbf{s}_t, \mathbf{a}_t)}{q_{\text{sa}}(\text{target}|\mathbf{s}_t, \mathbf{a}_t)}$.
- 3: Modify rewards for all $(\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})$ in \mathcal{D}' : $r_t \leftarrow r_t \eta \Delta r$.
- 4: Learn policy with $\{\mathcal{D} \cup \mathcal{D}'\}$ using prior model-free or model-based offline RL algorithms.

Dynamics-Aware Reward Augmentation

Lemma 2 Dynamics shift produces that $\mathcal{B}^{\pi}_{\mathcal{D}'}Q(\mathbf{s},\mathbf{a}) \neq \mathcal{B}^{\pi}_{M}Q(\mathbf{s},\mathbf{a})$ for some (\mathbf{s},\mathbf{a}) in S'_{π} .

Resort an additional compensation $\Delta_{\hat{T}',T}$ such that

$$\mathcal{B}_{\mathcal{D}'}^{\pi}Q(\mathbf{s},\mathbf{a}) + \Delta_{\hat{T}',T}(\mathbf{s},\mathbf{a}) = \mathcal{B}_{M}^{\pi}Q(\mathbf{s},\mathbf{a})$$

Algorithm 1 Framework for Dynamics-Aware Reward Augmentation (DARA)

Require: Target offline data \mathcal{D} (reduced) and source offline data \mathcal{D}'

- 1: Learn classifiers $(q_{sas} \text{ and } q_{sa})$ that distinguish source data \mathcal{D}' from target data \mathcal{D} . (See Appendix A.1.3)
- 2: Set dynamics-aware $\Delta r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) = \log \frac{q_{\text{sas}}(\text{source}|\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})}{q_{\text{sas}}(\text{target}|\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})} \log \frac{q_{\text{sa}}(\text{source}|\mathbf{s}_t, \mathbf{a}_t)}{q_{\text{sa}}(\text{target}|\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1})}$.
- 3: Modify rewards for all $(\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})$ in \mathcal{D}' : $r_t \leftarrow r_t \eta \Delta r$.
- 4: Learn policy with $\{\mathcal{D} \cup \mathcal{D}'\}$ using prior model-free or model-based offline RL algorithms.

 $\Delta_{\hat{T}',T}$ discourages the learning from these offline transitions that are likely in source but are unlikely in target.

Experiments

Bod	Body Mass Shift		1T	1T+10S w/o Aug.	1T+10S DARA	10T	1T	1T+10S w/o Aug.	1T+10S DARA	10T	1T	1T+10S w/o Aug.	1T+10S DARA	
			BEAR				BRAC-p				AWR			
Hopper	Random Medium Medium-R Medium-E	11.4 52.1 33.7 96.3	1.0 \ \ 0.8 \ \ 1.3 \ \ 0.8 \ \	4.6 ↑ 0.9 ↑ 18.2 ↑ 0.6 ↓	8.4 ↑ 1.6 ↑ 34.1 ↑ 1.2 ↑	11.0 32.7 0.6 1.9	10.9 \(29.0 \) 5.4 \\ 34.5 \\	9.6↓ 29.2↑ 20.1↑ 32.3↓	11.0 ↑ 32.9 ↑ 30.8 ↑ 34.7 ↑	10.2 35.9 28.4 27.1	10.3 ↑ 30.9 ↓ 8.8 ↓ 27.0 ↓	$ \begin{array}{c} 3.4 \downarrow \\ 20.8 \downarrow \\ 4.1 \downarrow \\ 26.8 \downarrow \end{array} $	4.5 ↑ 28.9 ↑ 4.2 ↑ 26.6 ↓	
	BCQ					· · · · · · · · · · · · · · · · · · ·	CQL		MOPO					
Hopper	Random Medium Medium-R Medium-E	10.6 54.5 33.1 110.9	10.6 \ 37.1 \ \ 9.3 \ \ 58 \ \	8.3 \\ 25.7 \\ 28.7 \\ 75.4 \\	9.7 ↑ 38.4 ↑ 32.8 ↑ 84.2 ↑	10.8 58.0 48.6 98.7	10.6 \\ 43.0 \\ 9.6 \\ 59.7 \\	10.2 \ 44.9 \ \ 1.4 \ \ 53.6 \ \	10.4 ↑ 59.3 ↑ 3.7 ↑ 99.7 ↑	11.7 28.0 67.5 23.7	4.8 ↓ 4.1 ↓ 1.0 ↓ 1.6 ↓	2.0 \ 5.0 \ \ 5.5 \ \ 4.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.1 ↑ 10.7 ↑ 8.4 ↑ 5.8 ↑	
		BEAR				BRAC-p				AWR				
Walker2d	Random Medium Medium-R Medium-E	7.3 59.1 19.2 40.1	1.5 ↓ -0.5 ↓ 0.7 ↓ -0.1 ↓	3.1 ↑ 0.6 ↑ 6.5 ↑ 1.5 ↑	3.2 ↑ 0.3 ↓ 7.3 ↑ 2.3 ↑	-0.2 77.5 -0.3 76.9	0.0 ↑ 6.4 ↓ 8.5 ↑ 20.6 ↓	1.3 ↑ 70.0 ↑ 9.9 ↑ 64.1 ↑	3.2 ↑ 78.0 ↑ 18.6 ↑ 77.5 ↑	1.5 17.4 15.5 53.8	1.3 \ldot 14.8 \ldot 7.4 \ldot 35.5 \ldot	2.0 ↑ 17.1 ↑ 1.6 ↓ 52.5 ↑	2.4 ↑ 17.2 ↑ 1.5 ↓ 53.3 ↑	
				BCQ		CQL				MOPO				
Walker2d	Random Medium Medium-R Medium-E	4.9 53.1 15.0 57.5	$ \begin{array}{c} 1.8 \downarrow \\ 32.8 \downarrow \\ 6.9 \downarrow \\ 32.5 \downarrow \end{array} $	4.5 ↑ 50.9 ↑ 14.9 ↑ 55.2 ↑	4.8 ↑ 52.3 ↑ 15.1 ↑ 57.2 ↑	7.0 79.2 26.7 111.0	$ \begin{array}{c} 1.7 \downarrow \\ 42.9 \downarrow \\ 4.6 \downarrow \\ 49.5 \downarrow \end{array} $	3.2 ↑ 80.0 ↑ 0.8 ↓ 63.5 ↑	3.4 ↑ 81.7 ↑ 2.0 ↑ 93.3 ↑	13.6 17.8 39.0 44.6	-0.2 \\ 7.0 \\ 5.1 \\ 5.3 \\	-0.1 ↑ 5.7 ↓ 3.1 ↓ 5.5 ↑	-0.1 \\ 11.0 \\ 14.2 \\ 17.2 \\	

DARA can enable an adaptive policy with reduced offline data in target.

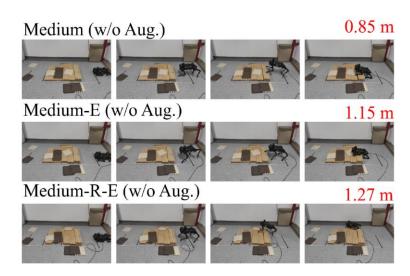
Experiments

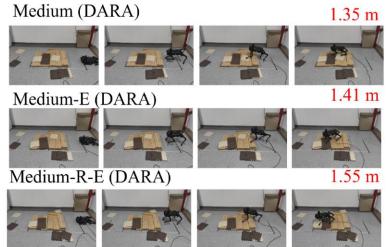
Body Mass Shift		Tune	DARA	Tune	DARA	Tune	DARA	Tune	DARA	Tune	DARA	$\pi_p \hat{T}$	$\hat{T}\pi_p$
		Bl	EAR	BRAC-p		BCQ		CQL		MOPO		MABE	
Hopper	Random	0.8	8.4 ↑	6.0	11.0 ↑	8.8	9.7 ↑	31.6	10.4 👃	0.7	2.1 ↑	10.6	9.0
ldc	Medium	0.8	1.6 ↑	22.7	32.9 ↑	31.7	38.4 ↑	44.5	59.3 ↑	0.7	10.7 ↑	48.8	23.1
H	Medium-R	0.7	34.1 ↑	14.7	30.8	27.5	32.8	1.3	3.7	0.6	8.4	17.1	20.4
	Medium-E	0.9	1.2	19.2	34.7	85.9	84.2 ↓	47.6	99.7 ↑	2.2	5.8 ↑	28.1	38.9
		BEAR		BRAC-p		BCQ		CQL		MOPO		MABE	
2d	Random	6.6	3.2 ↓	3.9	3.2 ↓	4.7	4.8 ↑	1.1	3.4 ↑	0.1	-0.1 ↓	6.0	-0.2
(er	Medium	0.3	0.3 \	76.0	78.0 ↑	28.4	52.3 ↑	72.3	81.7 ↑	-0.2	11.0 ↑	30.1	56.7
Walker2d	Medium-R	1.2	7.3	10.0	18.6 ↑	10.4	15.1	1.8	2.0 ↑	0.0	14.2	13.3	12.5
*	Medium-E	2.4	2.3 ↓	74.5	77.5 🕇	22.7	<i>57.2</i> ↑	68.6	93.3	7.3	17.2	43.7	82.7
	THE GIGHT L		2.5 \	, 1.5	77.5		07.2		70.0	7.5	17.2		02.7

Comparison with cross-domain baselines.

(BCQ)	w/o Aug.	DARA
Medium	0.85	1.35 ↑
Medium-E	1.15	1.41 ↑
Medium-R-E	1.27	1.55 ↑

Sim2real: Deployment on the obstructive and dynamic environment of BCQ.





Conclusion

1. The characterization of the dynamics shift in offline RL and the derivation of dynamics-aware reward augmentation (DARA) framework built on prior model-free and model-based formulations.

2. With only modest amounts of target offline data, we show that DARA-based offline methods can acquire an adaptive policy for the target tasks and achieve better performance compared to baselines in both simulated and real-world tasks.