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Motivation

Problem 1 - Strong correlation
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6; 10; 20 and 50 primitive skills are generated by existing skill discovery algorithms.

PCA on actions shows that there is strong correlation between these primitive skills.



Motivation

Problem 2 - Unbalance of skill discovery and transfer
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Our Method

Framework
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Figure: Independent Skill Transfer (IST).

Be able to reduce the dimension of skills and enhance the efficiency
of skill transfer.

Each of primitive skills is the combination of all independent skills,
which is balanced with the combined practical skill.



Our Method
Learn Independent Skills (LIS)

Collection of Observation and Action
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Our Method
Independent Skill Transfer (IST)
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Figure: Process of Independent Skill Transfer (IST)
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Experiment

Environment setting
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HCH -- The agent requires to stride over HCA -- The agent has to climb up HCU -- The agent goes upstairs to
a hurdle and walk to the destination. to a hill to reach the destination. reach the destination.

Baselines

Primitive skill transfer PST [1].
Primitive skill selection (PSS) [2].
Conventional RL- SAC [3].

[1] Xue Bin Peng, et al.. Mcp: Learning composable hierarchical control with multiplicative compositional policies. arXiv preprint arXiv:1905.09808, 2019.
[2] Archit Sharma, Shixiang Gu, Sergey Levine, et al. Dynamics aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.
[3] Tuomas Haarnoja, Aurick Zhou, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1801.01290, 2018.



Experiment
Performance of IST
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Figure: Reward collection of IST, PST, PSS and SAC on various tasks.

Compared with PST.
Compared with primitive skill selection (PSS).
Compared with conventional RL.



Experiment
Skill Transfer on Difficult Tasks

Environment HCH HCA HCU
Difficulty-level %;%é %;%é ﬁ;8§5 u=8° | ©u=13.76° | ©u=19.5° | h=0.25 | h=0.3 | h=0.35
IST 93.2% | 849 % | 83.8% | 100% 99.3% 97.2% 98.8 % 97.4% 95.2%
PST 73.5% 69 % 64.7% 99.9% 99.1% 97.2% 97.3% 97.1% 94.8%
PSS 50.1% 32.4% 37.2% 95% 58.8% 45.1% 75.8% 1235 —
SAC 80.5% | 75.4% — 99.2% 99.7 % 98.1% - - —

Table 1: Success rate of IST, PST, PSS and SAC over HCH, HCA and HCU within 1000 episodes.
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Conclusion

The correlation between skills can be largely deducted and a lower dimension
is thus obtained to enhance the efficiency of skill transfer.

Combination of independent skills take effects in both skill discovery and
transfer, where transferring independent skills is more essential.

Independent skills are task-independent, which can be transferred to a
variety of practical skills in a target environment.
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Thanks for attention.



