

Independent Skill Transfer for Deep Reinforcement Learning

Qiangxing Tian^{1,2}, GuanchuWang², Jinxin Liu^{1,2}, Donglin Wang² and Yachen Kang²

¹Zhejiang University, Hangzhou, China

²School of Engineering, Westlake University, Hangzhou, China

Motivation

(A)

(C)

(D)

Motivation

Problem 1 - Strong correlation

The normalized eigenvalue of cross-correlation denotes the percentage of each independent component.

• 6; 10; 20 and 50 primitive skills are generated by existing skill discovery algorithms.

PCA on actions shows that there is strong correlation between these primitive skills.

Motivation

Problem 2 - Unbalance of skill discovery and transfer

Our Method

Figure: Independent Skill Transfer (IST).

• Be able to reduce the dimension of skills and enhance the efficiency of skill transfer.

• Each of primitive skills is the combination of all independent skills, which is balanced with the combined practical skill.

Our Method

Learn Independent Skills (LIS)

Collection of Observation and Action

(1)
$$\tau_{z,i} = \{s_{z,i,1}, a_{z,i,1}, s_{z,i,2}, a_{z,i,2}, ..., s_{z,i,T_i}\}, 1 \le i \le L, \pi(a|s,z)$$
(2)
$$\tilde{\mathcal{S}}_z = \{s_{z,i,j} | 1 \le i \le L, 1 \le j \le T_i\}$$
(3)
$$\tilde{\mathcal{S}} = \tilde{\mathcal{S}}_1 \cup \tilde{\mathcal{S}}_2 \cup ... \cup \tilde{\mathcal{S}}_{|\mathcal{Z}|}$$
(4)
$$A_z = [a_1, a_2, ..., a_K \sim \pi(a|s,z) | s \in \tilde{\mathcal{S}}] \xrightarrow{\pi(a|s,z)}_{z \in \mathcal{Z}} \xrightarrow{\pi(a|s,z)}_{z \in \mathcal{Z}} \xrightarrow{\tilde{\mathcal{S}}} \hat{A}_{i, \hat{A}_2, ..., \hat{A}_{|\hat{\mathcal{Z}}|}} \xrightarrow{\hat{\mathcal{S}}_{i \in \hat{\mathcal{I}}}} \hat{A}_{i, \hat{A}_2, ..., \hat{A}_{|\hat{\mathcal{I}}|}} \xrightarrow{\hat{\mathcal{I}}_{i \in \hat{\mathcal{I}}}} \hat{\mathcal{I}}_{i \in \hat{\mathcal{I}}}$$
(5)
$$A_z = \text{flatten}(A_z)$$
• Generation of Independent actions

Figure: Framework of Learning Independent Skills (LIS).

Generation of Independent Skills

 $\begin{bmatrix} A_1^T \\ \hat{A}_2^T \\ \vdots \\ \hat{A}_T \end{bmatrix} = \boldsymbol{W}_I \boldsymbol{W}_P \begin{bmatrix} A_1^T \\ A_2^T \\ \vdots \\ A_T \end{bmatrix}$

 $\hat{\boldsymbol{A}}_{\hat{z}} = \begin{bmatrix} \hat{\boldsymbol{a}}_1, \hat{\boldsymbol{a}}_2, ..., \hat{\boldsymbol{a}}_K \sim \hat{\pi}_{\theta}(\hat{\boldsymbol{a}}|\boldsymbol{s}, \hat{z}) | \boldsymbol{s} \in \tilde{\mathcal{S}} \end{bmatrix}; \min_{\theta} \left\{ D_{KL} \begin{bmatrix} \hat{\pi}_{\theta}(\hat{\boldsymbol{a}}|\boldsymbol{s}, \hat{z}) | | \hat{p}(\hat{\boldsymbol{a}}|\boldsymbol{\mu}_{\boldsymbol{s}, \hat{z}}, \boldsymbol{\sigma}_{\boldsymbol{s}, \hat{z}}) \end{bmatrix} \right\}$

Our Method

Independent Skill Transfer (IST)

Figure: Process of Independent Skill Transfer (IST)

Independent skill: $\hat{\pi}_{ heta}(\hat{m{a}}|m{s}_t,\hat{z}_1)$

Transfer policy: $arpi_{\phi}([oldsymbol{lpha},b]|oldsymbol{s})$

Composite action:

$$\boldsymbol{a}_t = \hat{\boldsymbol{a}}_1 \alpha_{t,1} + \hat{\boldsymbol{a}}_2 \alpha_{t,2} + \ldots + \hat{\boldsymbol{a}}_{|\hat{\boldsymbol{\mathcal{Z}}}|} \alpha_{t,|\hat{\boldsymbol{\mathcal{Z}}}|} + \mathbf{1} \otimes b_t$$

Experiment

Environment setting

HCH -- The agent requires to stride over a hurdle and walk to the destination.

HCA -- The agent has to climb up to a hill to reach the destination.

HCU -- The agent goes upstairs to reach the destination.

Baselines

- Primitive skill transfer PST [1].
- Primitive skill selection (PSS) [2].
- Conventional RL- SAC [3].

Xue Bin Peng, et al.. Mcp: Learning composable hierarchical control with multiplicative compositional policies. arXiv preprint arXiv:1905.09808, 2019.
 Archit Sharma, Shixiang Gu, Sergey Levine, et al. Dynamics aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.
 Tuomas Haarnoja, Aurick Zhou, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1801.01290, 2018.

Experiment

Performance of IST

Figure: Reward collection of IST, PST, PSS and SAC on various tasks.

Compared with PST.

- Compared with primitive skill selection (PSS).
- Compared with conventional RL.

Experiment

Skill Transfer on Difficult Tasks

Environment	HCH			HCA			HCU		
Difficulty-level	$d = 2.2 \\ h = 0.3$	$d=3.2 \\ h=0.3$	$d=3.2 \\ h=0.35$	$u\!=\!8^{\circ}$	$u = 13.76^{\circ}$	$u = 19.5^{\circ}$	h = 0.25	$h \!=\! 0.3$	$h \!=\! 0.35$
IST	93.2 %	84.9 %	83.8%	100%	99.3%	97.2%	98.8%	97.4%	95.2%
PST	73.5%	69%	64.7%	99.9%	99.1%	97.2%	97.3%	97.1%	94.8%
PSS	50.1%	32.4%	37.2%	95%	58.8%	45.1%	75.8%	72.3%	_
SAC	80.5%	75.4%		99.2%	99.7%	98.1 %			

Table 1: Success rate of IST, PST, PSS and SAC over HCH, HCA and HCU within 1000 episodes.

HCA

HCU

Conclusion

• The correlation between skills can be largely deducted and a lower dimension is thus obtained to enhance the efficiency of skill transfer.

• Combination of independent skills take effects in both skill discovery and transfer, where transferring independent skills is more essential.

 Independent skills are task-independent, which can be transferred to a variety of practical skills in a target environment.

Thanks for attention.

