W) 745

Unsupervised Domain Adaptation with
Dynamics-Aware Rewards In
Reinforcement Learning

Presenter: Jinxin Liu (llujinxin@westlake.edu.cn)
Co-Authors: Hao Shen, Donglin Wang, Yachen Kang, Qiangxing Tian



The standard unsupervised RL:
learning skills for the target environment. Target

* Representing goals: @)
* Learning p(g) in target environment. P\g 6
* Learning 7 in target environment. Ty

e Learning iy In target environment.

1. Time-consuming and potentially expensive. X

Source Target

2. Transfer?
Assuming a source environment.
Direct transfer. X

é
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The standard unsupervised RL:
learning skills for the target environment. Target

« Representing goals:

 Learning p(g) In target environment. p(9) me

* Learning 7 in target environment. Ty

\ 4

e Learning iy In target environment.
sSource

Target
* Representing goals:
* Learning p(g) in source and target.

* Learning 7 in source and target.
 Learning mg In source env. \/



Source
Target

Source environment M. | with transition dynamics Ps
Target environment M+ , with transition dynamics Pr
(with same initial state distribution, same state/action spaces) \ /

@ Free ® Limited

Assumption
1. There is no transition that is possible in the target environment but impossible in the

source environment: P (s;41(8¢,a:) >0 = Ps(sir1|se,a:) >0

2. The difference between environments in their dynamics negligibly affects the goal
distribution.
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Time-consuming and

potentially expensive.

IPS,W9(95T) BDkL (pps,ﬂe( )pr’r’ (977_))

Assuming a source environment.

KL term penalizes producing a trajectory that
cannot be generated in the target environment.




I Domain Adaptation in Unsupervised RL

Probing policy 7,, : generating the
goal distribution p(g) and acquiring
the (partial) reward function 7,




I Domain Adaptation in Unsupervised RL

T, (3 7) + Tpg,n, (i) = BDKL [P (95 )P s (9:7)]

Same g Limited

Source

1 lower bound Rollout

2H (W) + By, [l0g g4 (w]8t11) + log g (w]s141)

— Epg BAT(st, at, $141)] - ~._phAr_--
Associted reward for g : 17, = logqy — fAT

states s¢+1 and s;41 are induced by the probing policy ,, and the policy 7y
Pjoint denotes the joint distribution of w, states s;1 and sy

Ar(st, a, St41) = log Ps(st+1|st,at) —log Pr(si41]s¢, az)

(State-action and state-action-next-state classifiers according Bayes’ rule)



Unsupervised RL Supervised RL
DIAYN; DADS; SMiRL; GPIML Off-Dynamics RL (DARC)

Cannot produce skills tailored to a new 1. DARC requires prior reward function.

environment with dynamics shifts. maximize —DxL (P, (7)|lp%_ (7))
A Ps oo P

2. Our DARS is a decoupled objective.

maximizing — Dy (ppg o (T) ||pj;q (7)) -

BOKL(Prpg o (T) 1D 7 (7))

[1] Liu, Jinxin, et al. "Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep Reinforcement Learning."



I Experiments: Emergent Behaviors with DARS

Map-b

(a) (Map-a, Map-b)

Map-b Map-c
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(b) (Map-b, Map-c)

Half cheetah = broken half cheetah
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(c) (HC, B-HC)

Ant = broken ant (x-y velocity, yaw angle)
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I Experiments: Comparison with Baselines
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Stable environments

Our unsupervised DARS reaches comparable performance
to (supervised) DARC L2.



Humanoid pairs
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Unstable environments

With the same amount of rollout steps, we can find that DARS can
learn a more stable skill for the target than SMIRL Finetuning.



I Experiments: Sim2real Transfer on Quadruped Robot

o balance. (Full-in-rea Failure

Movmg forward. (F ull-in-rea
Moving forward (anetumni) Fa1lure X Keeilni balance. innetumnii Fallure X
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1 Stable environments: forward & keeping
learn diverse skills (moving forward/backward) backward  balance

2 Unstable environments: Full-in-real > 6h >~ 6h
keeping balance skill Finetuning > 6h 4h

DARS 3 h 1h




1. we propose DARS to acquire adaptive skills for a target environment by
training mostly in a source environment especially in the presence of
dynamics shifts.

2. We show that our method obtains a near-optimal policy for target, as long as
a mild assumption is met.

3. Experiments on a range of tasks confirm the effectiveness of our approach.



